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ABSTRACT

As one of the major types of glaucoma, closed-angle glauco-
ma is the leading cause of irreversible blindness in the world.
The ability of Anterior Segment Optical Coherence Tomogra-
phy (AS-OCT) to obtain high-resolution cross-sectional im-
ages of the entire anterior chamber in a single image makes
it an important tool for glaucoma diagnosis. In this paper, we
propose a practical and efficient system based on deep learn-
ing to accurately classify anterior chamber angle (ACA) clo-
sure by using the location of scleral spur (SS) points. First,
the localization problem is reformulated as a pixel-wise re-
gression task. A fully convolutional deep neural network is
optimized to predict the probability that each pixel belongs to
the SS points, and the numerical coordinates are obtained by
the maximum likelihood estimation theory. Second, the ACA
region centered on the detected SS is cropped as the input of
the classification model. The single model applied for clas-
sification is SE-ResNet18 and optimized with focal loss. In
the AGE Challenge 2019[1], our proposed method obtained
superior performance for angle-closure glaucoma screening.

Index Terms— AS-OCT, glaucoma screening, scleral
spur localization, angle-closure classification

1. INTRODUCTION

Glaucoma is the one of the leading cause of irreversible blind-
ness worldwide. Primary angle-closure glaucoma (PACG) is
one of the main types of glaucoma, which is a major form of
glaucoma in Asia[1]. PACG is a progressive disease that can
lead to acute angle closure, chronic glaucomatous optic nerve
damage and blindness if left untreated. Active health exami-
nation is necessary for early detection and prevention. Anteri-
or Segment Optical Coherence Tomography (AS-OCT) is an
effective imaging modality for visually identifying the anteri-
or segment structure and observing the condition of anterior
chamber angle (ACA), which makes it an important diagnos-
tic tool for glaucoma[2]. It is of great importance to develop
automatic algorithms to make angle-closure glaucoma screen-
ing more convenient and stable.
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Many automatic methods have been developed for this
task in recent years. Tian et al. presented an algorithm to
assess the anterior chamber angle based on the automatical-
ly detected Schwalbes line for High-Definition OCT (HD-
OCT)[3]. Nongpiur et al. provided a classification algorithm
based on stepwise logistic regression that used a combina-
tion of 6 clinical parameters obtained from a single horizon-
tal AS-OCT scan[4]. Xu et al. localized the ACA region,
and then extracted multiscale HOG features and visual fea-
tures directly to classify the glaucoma subtype as open angle
or angle-closure[5]. Xu et al. then presented a reconstruction-
based method, called Similarity Weighted Linear Reconstruc-
tion (SWLR), for glaucoma classification from AS-OCT im-
ages containing the ACA[6]. Fu et al. put forward a data-
driven approach to integrate AS-OCT segmentation, measure-
ment, and screening. Fu et al. then proposed a multi-context
deep network (MCDN) architecture to learn discriminative
representations on particular regions of different scales. In
2019, Fu et al. detected the ACA region by using sliding win-
dows, and then the proposed multilevel deep network (MLD-
N) combined global and local level representations for angle-
closure detection in AS-OCT images[7].

Inspired by Fu et al.[7], we propose a practical and effi-
cient system based on deep learning for angle-closure glau-
coma screening in AS-OCT images. We firstly localize the
scleral spur (SS) points, which is the important anatomical
marker to provide the position of ACA. Different from the
method based on sliding window regression framework pro-
posed in [10], we reformulate the localization problem as a
pixel-wise regression task. A fully convolutional deep neural
network is optimized to predict the probability that each pixel
belongs to the SS points, and the numerical coordinates are
obtained based on the maximum likelihood estimation theo-
ry. According to clinical knowledge, the region of ACA, de-
termined by the localization result, is cropped as the input of
angle-closure classification. The only one model applied for
classification is SE-ResNet18 and optimized with focal loss.
In the AGE Challenge 2019, our proposed approach obtained
superior performance for angle-closure glaucoma screening,
with three commonly used classification metrics, including
AUC, SEN and SPE, all reaching 1.00. The effectiveness of
our proposed method is well demonstrated.
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Fig. 1. Illustration of the proposed system for the localization
of scleral spur and classification of angle closure.

2. METHOD

The overview of the proposed angle-closure glaucoma screen-
ing system is shown in Fig. 1. A U-shape fully convolutional
neural network is trained to generate the possibility map for
scleral spur detection. Then, a method based on maximum
likelihood estimation is applied to obtain the numerical coor-
dinates. According to several medical references, the anterior
chamber angle (ACA) region provides key risk indicators for
angle closure classification. Therefore, in the classification
section, the ACA patch, centered on the detected scleral spur,
is cropped as the region of interest (ROI). The classification
model outputs the screening result based on the input ACA
patch.

2.1. Scleral Spur Localization

Key points localization is a popular topic in computer vision
and deep learning[8][9]. In the recent development of deep
learning, numerous of algorithms for key points localization,
especially in human pose estimation, have been proposed.
The localization algorithms implemented by supervised neu-
ral network mainly include two forms: one is to directly use
the coordinates as the ground truth; the other is to generate
heatmap depended on the coordinate position as the ground
truth, such as Gaussian map. Compared with the former,
the latter reduces the complexity of the problem and is easier
to converge in the training process. In addition, the method
based on 2D heatmap ground truth can make use of the fully
convolutional network for training and prediction. For this,
we first generate the ground truth map G(x, y) for each im-
age. Given the coordinate (xc, yc) of the scleral spur, G(x, y)
is defined as follows:

G(x, y) = Aexp

[
− (x− xc)

2 + (y − yc)
2

2σ2

]
(1)

where A is a parameter used to normalize the values in
G(x, y) to [0, 1]. σ is the variance governing the spread of

ground truth map across the image domain. With the gen-
erated heatmap as ground truth, the localization problem is
converted to a probability regression problem.

We employ the LinkNet[10], a typically light U-shape ar-
chitecture, to learn the transformation from AS-OCT image
to the probability map. The encoder part is the pre-trained
ResNet-18, which retains the first four extracting blocks with-
out average pooling layer and fully connected layers. Com-
pared with U-net, LinkNet replaces the concatenation with
addition operation to realize the skip connection, which will
reduce computation and accelerate the training progress. To
train the pixel-wise regression network, we utilize the mean
square error (MSE) loss to calculate the difference between
ground truth and prediction. We apply random data augmen-
tation before training, including adjusting brightness, contrast
and sharpness, in order to improve the generalization capabil-
ities of the model. The enhancement factors are all following
the log-normal distribution.

There are several methods to convert the output heatmap
to the numerical coordinate. The most common way is to get
the position of the peak value in the map. However, it is not
robust enough and will lead to quantization error of coordi-
nate rounding. In most human pose estimation researches, an
offset in the direction from the highest response to the second
highest response is used to obtain the final location. Here,
we consider the pixel value of the output as the probability
density, which ideally is a 2D Gaussian probability density.
A method based on maximum likelihood estimation (MLE)
theory is developed to obtain the coordinate (x̂c, ŷc) from the
output heatmap. The formula is defined as follows:

x̂c =

∑
i∈C xipi∑
i∈C pi

ŷc =

∑
i∈C yipi∑
i∈C pi

(2)

where C indicates the set containing pixels whose val-
ues are higher than the half of the maximum in the heatmap.
(xi, yi) is corresponding coordinate, and pi is the value of the
ith pixel in the set. The results based on the weighted average
operation have less error than finding the peak directly.

2.2. Angle Closure Classification

In the angle closure classification section, the coordinate of
scleral spur is utilized to localize the ACA region, which pro-
vides key risk indicators for angle closure classification. We
crop a 128× 128 patch with scleral spur centered as the input
of the classification network, shown in Fig. 2. To tolerate the
minor localization error, Gaussian noise is added to the real
coordinates when cropping patches during training process.
The operation also works as a part of data augmentation to
make the model more generalized.

To further improve the efficiency of the system, the clas-
sification section contains only one network, which is a
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Fig. 2. ROI cropped randomly around ground truth. The
SS ground truth is marked by yellow point. ROI centers are
marked by colorful crosses.

modified SE-ResNet18, shown in Fig. 1. Experiments in
Reference[11] show that integrating SE block into the differ-
ent position of residual blocks performs similarly well. Here,
we insert the SE block between each residual layers of pre-
trained ResNet18, without destroying the original residual
architecture.

Data imbalance is another difficulty in achieving accurate
classification. To overcome this problem, the focal loss is
employed as the cost function during training period, which
is defined as Equation (3). Here, y is the ground truth of each
angle, and ŷ is the predicted result. The α we determined is
6.0 and γ is 2.0.

Lfocal = −αy(1− ŷ)γ lg(ŷ)− (1− y)ŷγ lg(1− ŷ) (3)

According to the relevant medical knowledge, the closure
status of the left and right anterior chambers in the same AS-
OCT are extremely correlated, which is also confirmed in the
official training data label of AGE 2019 challenge. Based on
such rule, voting mechanism is introduced in the final test,
which efficiently increase the accuracy of classification.

3. EXPERIMENTAL RESULTS

3.1. Data description and implementation details

The proposed system is estimated on a public challenge
dataset, which is supplied for the challenge named Angle
closure Glaucoma Evaluation Challenge(AGE). The dataset
provided by AGE contains 4800 annotated AS-OCT images,
which are divided equally for training, validation and testing.
Classification of angle width was based on gonioscopy by
glaucoma experts. Scleral spur localization was determined
by the mean of 4 independent annotations from a group of
ophthalmologists, followed by a manual adjustment from
a senior glaucoma expert. Each RGB image has a size of
2130 × 998 captured by CASIA I. We find that the blue
channel of each image has higher level noise than other t-
wo channels. Therefore, we remove the blue channel and
convert the raw image as a gray image. In order to ensure
the receptive field is sufficient and reduce the computation,

Table 1. Localization results of several baselines and our
model on the online validation set. Bold numbers indicate
the best performance.

Model EDE[pixel]
FCN 21.19
RCNN 15.46
U-Net 14.72
Proposed Method 13.14

the modified OCT images are resized to 512 × 256 as the
network inputs. We choose the Average Euclidean Distance
Error(EDE) to estimate the localization results. The metrics
used for estimating the screening results include area under
curve(AUC), sensitivity (SEN) and specificity (SPE).

We implement our screening system using the publicly
available Pytorch library. The loss for both localization and
classification model is minimized by the Adam optimizer with
an initial learning rate 0.0002. Two models included in the
system are trained separately on Tesla K40 GPU(12GB). Dur-
ing inference section, it takes only about 200ms and 0.6GB
GPU memory to output the final screening result for a single
512 × 256 AS-OCT image, which indicates that it is easy to
deploy the screening system.

This study was approved by the ethical review commit-
tee of Zhongshan Ophthalmic Center GuangzhouChina and
conducted in accordance with the tenets of the Helsinki Dec-
laration. Written informed consent was obtained from each
subject.

3.2. Results

Since the challenge has not released the label of test set, we
first evaluate our system offline on the self-defined validation
dataset, which is split from the training set. We compare
different threshold level to determine the pixel set from co-
ordinate calculation. The metric results show that when the
threshold is about half of the maximum value in heatmap, the
localization error is the smallest. When estimating the mod-
el online, we compare our proposed localization model with
several baselines, including U-net, FCN and RCNN. In Table
1, from the quantitative results, our model outperforms others
in Average Euclidean Distance. Finally, we achieve a result
with Average Euclidean Distance about 13.14 pixel on online
validation set (in 2130× 998 AS-OCT).

For classification, on offline validation set, common met-
rics including area under curve, sensitivity and specificity are
all 1.00. Due to the models great generalization, these metrics
are still 1.00 on the official online validation set. The ablation
experiment results for the classification model are shown in
Table 2.
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Fig. 3. Samples of localization results. Green cross is the
label and red cross is the predicted result. The first column
contains two open angles AS-OCT, and those in the second
column are angle-closure.

Table 2. Classification results of different methods on online
validation set. Bold numbers indicate the best performance.

Method AUC SEN SPE
ResNet18 0.998 0.943 0.996
ResNet18-Focal 0.997 0.981 0.983
ResNet18-Focal-Vote 0.999 0.997 0.993
ResNet18-Focal-Vote-ROI 0.999 1.000 0.998
Proposed Method 1.000 1.000 1.000

4. CONCLUSION

In this work, we propose an automatic system with two deep
learning networks for localization of scleral spur and classifi-
cation of angle closure. Inspired by human pose estimation,
we convert the scleral spur localization problem as a regres-
sion problem. When obtaining the coordinate from predicted
heatmap, a method based on MLE theory is proposed to re-
duce the transform error. In classification section, we utilize
the result of localization to crop a ACA patch as the input of
classification model. The closure status at both sides of AS-
OCT have high correlation, so a vote mechanism is applied
to reduce the classification error. The experiment results indi-
cate that our method performs well on AGE challenge dataset,
and it is time-saving and requires little GPU memory. There-
fore, it can provide efficient and reliable screening results for
ophthalmologist.
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